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Applications au Controle
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Mechanics is the paradise of the mathematical sciences, because by
means of it one comes to the fruits of mathematics

Leonardo da Vinci
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1: Introduction to Hamiltonian and
Lagrangian mechanics
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Different geometries provide different dynamics
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Dynamics on symplectic geometry

As it is well known, Hamiltonian dynamics are developed using symplectic
geometry. Indeed, let (M, ω) be a symplectic manifold, that is, ω is a
non–degenerate closed 2-form, say dω = 0 and ωn 6= 0, where M has
even dimension 2n. Then, if H : M −→ R is a Hamiltonian function, the
Hamiltonian vector field XH is obtained using the equation

[(XH) = dH (1)

where [ is the vector bundle isomorphism

[ : TM −→ T ∗M , [(v) = iv ω

In Darboux coordinates (qi , pi ) we have ω = dqi ∧ dpi and

XH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi

in such a way that an integral curve (qi (t), pi (t)) satisfies the Hamilton
equations

dqi

dt
=
∂H

∂pi
,
dpi
dt

= −∂H
∂qi

(2)
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Dynamics on cosymplectic geometry

A cosymplectic structure on an odd-dimensional manifold M is a pair
(Ω, η) where Ω is a closed 2-form, η is a closed 1-form, and η ∧ Ωn 6= 0,
where M has dimension 2n + 1. (M,Ω, η) will be called a cosymplectic
manifold.
There is a Darboux theorem for a cosymplectic manifold, that is, there
are local coordinates (called Darboux coordinates) (qi , pi , z) around any
point of M such that

Ω = dqi ∧ dpi , η = dz

There exists a unique vector field (called Reeb vector field) R such that

iR Ω = 0 , iR η = 1

In Darboux coordinates we have

R =
∂

∂z

Let H : M −→ R be a Hamiltonian function, say H = H(qi , pi , z).
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Consider the vector bundle isomorphism

[̃ : TM −→ T ∗M , [(v) = iv Ω + η(v) η

and define the gradient of H by

[̃(grad H) = dH

Then

grad H =
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi
+
∂H

∂z

∂

∂z
(3)

Next we can define two more vector fields:

The Hamiltonian vector field

XH = grad H −R(H)R

and the evolution vector field

EH = XH +R
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From (3) we obtain the local expression

EH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi
+

∂

∂z
(4)

Therefore, an integral curve (qi (t), pi (t), z(t)) of EH satisfies the
time-dependent Hamilton equations

dqi

dt
=

∂H

∂pi
(5)

dpi
dt

= −∂H
∂qi

(6)

dz

dt
= 1 (7)

and then z = t + const so that both coordinates can be identified.
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Dynamics on contact geometry

Consider now a contact manifold (M, η) with contact form η; this means
that η ∧ dηn 6= 0 and M has odd dimension 2n + 1. There exists a
unique vector field R (also called Reeb vector field) such that

iR dη = 0 , iR η = 1

There is a Darboux theorem for contact manifolds so that around each
point in M one can find local coordinates (called Darboux coordinates)
(qi , pi , z) such that

η = dz − pi dq
i

In Darboux coordinates we have

R =
∂

∂z

Define now the vector bundle isomorphism

[̄ : TM −→ T ∗M , [̄(v) = iv dη + η(v) η
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For a Hamiltonian function H on M we define the Hamiltonian vector
field by

[̄(XH) = dH − (R(H) + H) η

In Darboux coordinates we get this local expression

XH =
∂H

∂pi

∂

∂qi
− (

∂H

∂qi
+ pi

∂H

∂z
)
∂

∂pi
+ (pi

∂H

∂pi
− H)

∂

∂z
(8)

Therefore, an integral curve (qi (t), pi (t), z(t)) of XH satisfies the contact
Hamilton equations

dqi

dt
=

∂H

∂pi
(9)

dpi
dt

= −(
∂H

∂qi
+ pi

∂H

∂z
) (10)

dz

dt
= (pi

∂H

∂pi
− H) (11)
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Example

Consider a Hamiltonian system given by the Hamiltonian

H(q, p, z) =
p2

2m
+ V (q) + γ z

where γ is a constant.
We obtain the following dynamical equations

q̇ =
p

m

ṗ = −∂V
∂q
− γ z

ż =
p2

2m
− V (q)− γ z

that are just the damped Newtonian equations.
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Symplectic Lagrangian formalism

Let L : TQ −→ R be a Lagrangian function, where Q is a configuration
n-dimensional manifold. Then, L = L(qi , q̇i ), where (qi ) are coordinates
in Q and (qi , q̇i ) are the induced bundle coordinates in TQ. We will
assume that L is regular, that is, the Hessian matrix(

∂2L

∂q̇i∂q̇j

)
is regular. Using the canonical endomorphism S on TQ locally defined by

S = dqi ⊗ ∂

∂q̇i

one can construct a 1-form λL defined by

λL = S∗(dL)

and the 2-form
ωL = −dλL

Then, ωL is symplectic if and only if L is regular.
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Consider now the vector bundle isomorphism

[L : T (TQ) −→ T ∗(TQ)

[L(v) = iv ωL

and the Hamiltonian vector field

ξL = XEL

defined by
[L(ξL) = dEL

where EL = ∆(L)− L is the energy, where ∆ = q̇i ∂
∂q̇i is the Liouville

vector field on TQ. The vector field ξL (the Euler-Lagrange vector field)
is locally given by

ξL = q̇i
∂

∂qi
+ B i ∂

∂q̇i
(12)

where

B i ∂

∂q̇i
(
∂L

∂q̇j
) + q̇i

∂

∂qi
(
∂L

∂q̇j
)− ∂L

∂qj
= 0 (13)

Now, if (qi (t), q̇i (t)) is an integral curve of ξL, then it satisfies the usual
Euler-Lagrange equations

d

dt
(
∂L

∂q̇i
)− ∂L

∂qi
= 0 (14)
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Exercise 1: SODEs

A SODE ξ on TQ is a vector field on TQ such that S(ξ) = ∆.

1 Compute the local form of a SODE ξ in bundle coordinates.

2 Prove that an integral curve σ(t) of ξ is the tangent lift of its
projection τQ ◦ σ on Q, where τQ : TQ −→ Q is the canonical
projection.

3 Prove similar results for a time dependent SODE.
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Exeercise 2: Legendre transformation

1 Prove that the Legendre transformation transport the
Euler-Lagrange vector field into the Hamiltonian vector field.

2 How could we define a converse of the Legendre transformation if
we start from a Hamiltonian H on T ∗Q?
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Exercise 3: Geodesic spray

Let L be a Lagrangian on TQ defined by a Riemannian metric g on Q,
say

L(qi , q̇i ) = (1/2)gij q̇
i q̇j

where gij are the components of the metric in a coordinate system (qi )
on Q.

1 Prove that the Euler-Lagrange vector field ξL is just the geodesic
spray.

2 Prove that the Euler-Lagrange equations coincide with the geodesics
of the metric.
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Cosymplectic Lagrangian formalism

We will recall here the geometric formalism for time-dependent
Lagrangian systems, just to show the differences with the previous
contact formalism. In this case, we also have a regular Lagrangian
L : TQ × R −→ R, but instead to consider the contact 1-form ηL we will
consider the cosymplectic structure given by the pair (ΩL, dz), where

ΩL = −dλL

It is esay to check that, indeed, if L is regular then

dz ∧ Ωn
L 6= 0,

and conversely. Again, we have a Reeb vector field

R =
∂

∂z
−W ij ∂2L

∂q̇j∂z

∂

∂q̇i
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Consider now the following vector fields determined by means of the
vector bundle isomorphism

[̃L : T (TQ × R) −→ T ∗(TQ × R)

[̃L(v) = iv ΩL + dz(v) dz

say,

1 the gradient vector field

grad (EL) = ]̃L(dEL)

2 the Hamiltonian vector field

XEL
= EL −R(EL)R

3 and the evolution vector field

EL = XEL
+R

where ]̃L = ([̃L)−1 is the inverse of [̃L.
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The evolution vector field EL is locally given by

EL = q̇i
∂

∂qi
+ B i ∂

∂q̇i
+

∂

∂z
(15)

where

B i ∂

∂q̇i
(
∂L

∂q̇j
) + q̇i

∂

∂qi
(
∂L

∂q̇j
)− ∂L

∂qj
= 0 (16)

Now, if (qi (t), q̇i (t), z(t)) is an integral curve of EL then it satisfies the
usual Euler-Lagrange equations

d

dt
(
∂L

∂q̇i
)− ∂L

∂qi
= 0 (17)

since z = t + constant.
C. Albert: Le théoreme de réduction de Marsden-Weinstein en géométrie
cosymplectique et de contact. J. Geom. Phys. 6 (1989), no. 4, 627–649.
F. Cantrijn, M. de León, E.A. Lacomba: Gradient vector fields on
cosymplectic manifolds. Journal of Physics A: Mathematical and General
25 (1), 175–188.
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Contact Lagrangian formalism

Let L : TQ × R −→ R be a Lagrangian function, where Q is a
configuration n-dimensional manifold. Then, L = L(qi , q̇i , z), where (qi )
are coordinates in Q, (qi , q̇i ) are the induced bundle coordinates in TQ
and z is a global coordinate in R.
We will assume that L is regular, that is, the Hessian matrix(

∂2L

∂q̇i∂q̇j

)
is regular.
From L, and using the canonical endomorphism S on TQ locally defined
by

S = dqi ⊗ ∂

∂q̇i

one can construct a 1-form λL defined by

λL = S∗(dL)

where now S and S∗ are the natural extension of S and its adjoint
operator S∗ to TQ × R.
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Therefore, we have

λL =
∂L

∂q̇i
dqi

Now, the 1-form

ηL = dz − ∂L

∂q̇i
dqi

is a contact form on TQ × R if and if L is regular; indeed, if L is regular,
then

ηL ∧ (dηL)n 6= 0,

and conversely. From now on, we always assume that it is the case. The
corresponding Reeb vector field is

R =
∂

∂z
−W ij ∂2L

∂q̇j∂z

∂

∂q̇i
,

where (W ij) is the inverse matrix of the Hessian (Wij). The energy of the
systems is defined by

EL = ∆(L)− L

where ∆ = q̇i ∂
∂q̇i is the Liouville vector field on TQ extended in the

usual way to TQ × R. Therefore,

EL = q̇i
∂L

∂q̇i
− L
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Denote by
[̄L : T (TQ × R) −→ T ∗(TQ × R)

the vector bundle isomorphism

[̄L(v) = iv (dηL) + (ivηL) ηL

given by the contact form ηL on TQ × R. We shall denote its inverse by

]̄L = ( ¯[L)
−1

.
Denote by ξ̄L the unique vector field defined by the equation

[̄L(ξ̄L) = dEL − (R(EL) + EL) ηL (18)

A direct computation from eq. (18) shows that ξ̄L is locally given by

ξ̄L = q̇i
∂

∂qi
+ Bi ∂

∂q̇i
+ L

∂

∂z
(19)

where the components Bi satisfy the equation

Bi ∂

∂q̇i
(
∂L

∂q̇j
) + q̇i

∂

∂qi
(
∂L

∂q̇j
) + L

∂

∂z
(
∂L

∂q̇i
)− ∂L

∂qi
=

∂L

∂q̇i
∂L

∂z
(20)
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Then, if (qi (t), q̇i (t), z(t)) is an integral curve of ξ̄L, and substituting its
values in eq. (20) we obtain

q̈i
∂

∂q̇i
(
∂L

∂q̇j
) + q̇i

∂

∂qi
(
∂L

∂q̇j
) + ż

∂

∂z
(
∂L

∂q̇i
))− ∂L

∂qi
=

∂L

∂q̇i
∂L

∂z

which corresponds to the generalized Euler-Lagrange equations
considered by G. Herglotz in 1930.

d

dt
(
∂L

∂q̇i
)− ∂L

∂qi
=

∂L

∂q̇i
∂L

∂z
(21)

G. Herglotz: Beruhrungstransformationen, Lectures at the University of
Gottingen, Gottingen, 1930.
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The Hamiltonian formalism

Let H : T ∗Q × R −→ R be a Hamiltonian function, say H = H(qi , pi , z)
where (qi , pi , z) are bundle coordinates in H : T ∗Q × R. Consider the
1-form

ηQ = dz − θQ
where θQ is the canonical Liouville form on T ∗Q and we are considering
the usual identifications for a form on T ∗Q or R and its pull-back to
T ∗Q × R. In local coordinates, we have

ηQ = dz − pi dq
i

So, ηQ is a contact form on T ∗Q × R and (qi , pi , z) are Darboux
coordinates. Therefore, we can obtain a Hamiltonian vector field XH

which locally takes the same form that above.
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Legendre transformation

Given a Lagrangian function L : TQ × R −→ R we can define the
Legendre transformation

FL : TQ × R −→ T ∗Q × R

given by
FL(qi , q̇i , z) = (qi , p̂i , z)

where

p̂i =
∂L

∂q̇i

A direct computation shows that

FL∗ηQ = ηL

and then we have
T (FL)(ξ̄L) = XH

and consequently the generalized Euler-Lagrange (or Herglotz) equations
are transformed into the contact Hamilton equations.
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Variational formulation of contact Lagrangian mechanics: Herglotz
principle
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Variational formulation of contact Lagrangian mechanics

Let L : TQ × R→ R be a Lagrangian function. We will recall the
so-called Herglotz’s principle, a modification of Hamilton’s principle that
allows us to obtain Herglotz’s equations, sometimes called generalized
Euler-Lagrange equations.
Fix q1, q2 ∈ Q and an interval [a, b] ⊂ R. We denote by
Ω(q1, q2, [a, b]) ⊆ (C∞([a, b]→ Q)) the space of smooth curves ξ such
that ξ(a) = q1 and ξ(b) = q2. This space has the structure of an infinite
dimensional smooth manifold whose tangent space at ξ is given by the
set of vector fields over ξ that vanish at the endpoints, that is,

TξΩ(q1, q2, [a, b]) = {vξ ∈ C∞([a, b]→ TQ) |
τQ ◦ vξ = ξ, vξ(a) = 0, vξ(b) = 0}.

(22)
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We will consider the following maps. Fix c ∈ R. Let

Z : Ω(q1, q2, [a, b])→ C∞([a, b]→ R) (23)

be the operator that assigns to each curve ξ the curve Z(ξ) that solves
the following ODE:

dZ(ξ)(t)

dt
= L(ξ(t), ξ̇(t),Z(ξ)(t)), Z(ξ)(a) = c . (24)

Now we define the action functional as the map which assigns to each
curve the solution to the previous ODE evaluated at the endpoint:

A : Ω(q1, q2, [a, b])→ R,
ξ 7→ Z(ξ)(b),

(25)

that is, A = evbZ, where evb : ζ 7→ ζ(b) is the evaluation map at b.
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Theorem(Contact variational principle) Let L : TQ × R→ R be a
Lagrangian function and let ξ ∈ Ω(q1, q2, [a, b]) be a curve in Q. Then,
(ξ, ξ̇,Z(ξ)) satisfies the Herglotz’s equations if and only if ξ is a critical
point of A. This theorem generalizes Hamilton’s Variational Principle.

In the case that the Lagrangian is independent of the R coordinate (i.e.,
L(x , y , z) = L̂(x , y)) the contact Lagrange equations reduce to the usual
Euler-Lagrange equations. In this situation, we can integrate the ODE of
(25) and we get

A(ξ) =

∫ b

a

L̂(ξ(t), ξ̇(t))t +
c

b − a
, (26)

that is, the usual Euler-Lagrange action up to a constant.
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Exercise 4: Contact Hamiltonian vector fields

For a Hamiltonian function H on a contact manifold (M, η) the
Hamiltonian vector field XH is defined by

[̄(XH) = dH − (R(H) + H) η

Check that this formula is equivalent to these two conditions:

η(XH) = −H , LXH
η = −(R(H) + H)
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2: A unified geometric framework
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Contact manifolds and Jacobi manifolds

A Jacobi manifold is a triple (M,Λ,E ), where Λ is a bivector field (a
skew-symmetric contravariant 2-tensor field) and E ∈ X(M) is a vector
field, so that the following identities are satisfied:

[Λ,Λ] = 2E ∧ Λ , LEΛ = [E ,Λ] = 0,

where [·, ·] is the SchoutenNijenhuis bracket.
Given a Jacobi manifold (M,Λ,E ), we define the Jacobi bracket:

{·, ·} : C∞(M)× C∞(M) 7→R,

(f , g) 7→ {f , g},

where
{f , g} = Λ(df , dg) + fE (g)− gE (f ).
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This bracket is bilinear, antisymmetric, and satisfies the Jacobi identity.
Furthermore it fulfills the weak Leibniz rule:

supp({f , g}) ⊆ supp(f ) ∩ supp(g).

That is, (C∞(M), {·, ·}) is a local Lie algebra in the sense of Kirillov.
Conversely, given a local Lie algebra (C∞(M), {·, ·}), we can find a
Jacobi structure on M such that the Jacobi bracket coincides with the
algebra bracket.
The weak Leibniz rule is equivalent to this identity:

{f , gh} = g{f , h}+ h{f , g}+ ghE (f )
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Given a contact manifold (M, η) we can define a Jacobi structure
(M,Λ,E ) by

Λ(α, β) = −dη(]̄α, ]̄β), E = −R,

where ]̄ = [̄−1.
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Poisson manifolds

One important particular case of Jacobi manifolds are Poisson manifolds
(when E = 0). The corresponding Poisson bracket satisfies the following
Leibniz rule

{f , gh} = {f , g}h + g{f , h}.

Examples of Poisson manifolds are symplectic and cosymplectic
manifolds.
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Cosymplectic manifold

A cosymplectic manifold is given by a triple (M,Ω, η) where M is a
(2n + 1)-dimensional manifold, Ω is an exact 2-form and η is an exact
1-form.
We consider the isomorfism

[̃ : TM → T ∗x M

X 7→ iXΩ + η(X )η.

If we denote its inverse by ˜sharp = [̃−1, then

Λ(α, β) = Ω(]̃α, ]̃β),

is a Poisson tensor on M.
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Locally conformal symplectic manifolds

An almost symplectic manifold is said to be locally conformally
symplectic if for each point x ∈ M there is an open neighborhood U such
that d(eσΩ) = 0, for σ : U → R, so (U, eσΩ) is a symplectic manifold. If
U = M, then it is said to be globally conformally symplectic.
One can see that these local 1-forms dσ defines a closed 1-form θ such
that

dΩ = θ ∧ Ω.

The one-form θ is called the Lee one-form. Locally conformally
symplectic manifolds (L.C.S.) with Lee form θ = 0 are symplectic
manifolds. We define a bivector Λ on M and a vector field E given by

Λ(α, β) = Ω([−1(α), [−1(β)) = Ω(](α), ](β)), E = [−1(θ)

with α, β ∈ Ω1(M) and [ : X(M)→ Ω1(M) is the isomorphism of
C∞(M) modules defined by [(X ) = ιXΩ. Here ] = [−1. The vector field
E satisfies ιEθ = 0 and LEΩ = 0,LEθ = 0. Then, (M,Λ,E ) is an even
dimensional Jacobi manifold.
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Jacobi manifolds (continued)

Let (M,Λ,E ) be a Jacobi manifold. We define the following morphism of
vector bundles:

]Λ : TM∗ → TM

α 7→ Λ(α, ·),

which also induces a morphism of C∞(M)-modules between 1-forms and
vector fields.
In the case of a contact manifold, this is given by

]Λα = ]α− α(R)R,

since
η(]Λα) = α(R)

for any 1-form α.
For a contact manifold, ]Λ is not an isomorfism. In fact, ker ]Λ =< η >
and Im ]Λ = H.
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Vector fields associated with functions f on the algebra of smooth
functions C∞(M) are defined as

Xf = ]Λ(df ) + fE ,

The characteristic distribution C of (M,Λ,E ) is generated by the values
of all the vector fields Xf . This characteristic distribution C is defined in
terms of Λ and E as follows

Cp = ]Λp (T ∗pM)+ < Ep >, ∀p ∈ M

where ]p : T ∗pM → TpM is the restriction of ]Λ to T ∗pM for every p ∈ M.
Then, Cp = C ∩ TpM is the vector subspace of TpM generated by Ep and
the image of the linear mapping ]p.
The distribution is said to be transitive if the characteristic distribution is
the whole tangent bundle TM.
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Distributions and integrability

Definitions

A singular distribution D on a manifold M is the assignement to
each point x in M a vector subspace Dx of TxM. If the dimension
of Dx is constant, then D is called a regular distribution.
D is called smooth if for any point x ∈ M and any tangent vector
vx ∈ Dx , there is a vector field X on a neighborhood U of x which is
tangent to D at any point of U and such that X (x) = vx .
A distribution D is invariant by a vector field X if its flow preserves
the distribution.
A distribution D is generated by a family C of vector fields if any
Dx is generated by the values of the vector fields of C at x .
D is called integrable if for any point x ∈ M there is a maximal
integral submanifold passing through x .

Theorem (Stefan-Sussmann) Let D be a smooth distribution on M.
Then the following statements are equivalent:

1 D is integrable.
2 D is generated by a family C of smooth vector fields and invariant

by C .
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Structure theorem for Jacobi manifolds

Theorem

The characteristic distribution of a Jacobi manifold (M,Λ,E ) is
completely integrable in the sense of Stefan–Sussmann, thus M defines a
foliation whose leaves are not necessarily of the same dimension, and it is
called the characteristic foliation. Each leaf has a unique transitive Jacobi
structure such that its canonical injection into M is a Jacobi map (that
is, it preserves the Jacobi brackets). Each can be

1 A locally conformally symplectic (or a symplectic) manifold if the
dimension is even.

2 A manifold equipped with a contact one-form if its dimension is odd.
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Exercise 5: Characteristic distribution

1 Compute the characteristic distribution in the cases of symplectic,
cosymplectic, locally conformal symplectic and contact manifolds.

2 Prove that the characteristic distribution is invariant (in the sense of
singular distributions) in the case of contact manifolds.
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Exercise 6: Lagrangian submanifolds and dynamics

Let (M, ω,H) be a Hamiltonian system and XH the corresponding
Hamiltonian vector field. If ωC is the tangent or complete lift of ω to
TM, prove:

1 ωC is a symplectic form on TM

2 XH(M) ⊂ TM is a Lagrangian submanifold.
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3: Dynamics and submanifolds
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Submanifolds of a contact manifold

As in the case of symplectic manifolds, we can consider several interesting
types of submanifolds of a contact manifold (M, η). To define them, we
will use the following notion of complement for contact structures:
Let (M, η) be a contact manifold and x ∈ M. Let ∆x ⊂ TxM be a linear
subspace. We define the contact complement of ∆x

∆x
⊥Λ = ]Λ(∆x

o),

where ∆x
o = {αx ∈ T ∗x M | αx(∆x) = 0} is the annihilator.

We extend this definition for distributions ∆ ⊆ TM by taking the
complement pointwise in each tangent space.
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Let N ⊆ M be a submanifold. We say that N is:

Isotropic if TN ⊆ TN⊥λ .

Coisotropic if TN ⊇ TN⊥λ .

Legendrian if TN = TN⊥λ .

Let (M, η) be a contact manifold of dimension 2n + 1.

One can easily prove the following characterization of a Legendrian
submanifold:

A submanifold N of M is Legendrian if and only if it is a maximal
integral manifold of ker η (and then it has dimension n).
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Exercise 7: Characterization of Legendrian submanifolds

Prove this characterization of a Legendre submanifolds:

A submanifold N of M is Legendrian if and only if it is a maximal
integral manifold of ker η (and then it has dimension n).
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Proposition A section γ : Q −→ T ∗Q × R of the canonical projection
T ∗Q ×R −→ Q is a Legendre submanifold of (T ∗Q ×R, ηQ) if and only
if γ is locally the 1-jet of a function f : Q −→ R.

The above result is the natural extension of the well-known fact that a
section σ of the cotangent bundle πQ : T ∗Q −→ Q is a Lagrangian
submanifold with respect to the canonical symplectic structure
ωQ = −dθQ on T ∗Q if and only if σ is a closed 1-form (and hence,
locally exact).
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Coisotropic reduction in contact geometry

We will present a result of reduction in the context of contact geometry,
which is analogous to the well-known coisotropic reduction in symplectic
geometry.
First we note that the horizontal distribution (H, dη) is symplectic. Let
be ∆ ⊆ H. We denote by ⊥η the symplectic orthogonal component

∆⊥dη = {v ∈ TM | dη(v ,∆) = 0},

We remark that R ∈ ∆⊥dη for any distribution ∆. There is a simple
relationship between both notions of orthogonal complement:
Let ∆ ⊆ TM be a distribution. Then

∆⊥Λ = ∆⊥dη ∩H.
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We have the following posibilities regarding the relative position of a
distribution ∆ in a contact manifold and the vertical and horizontal
distributions

Definition

Let ∆ ⊆ TM be a distribution of rank k . We say that a point x ∈ M is

1 Horizontal if ∆x = ∆x ∩Hx .

2 Vertical if ∆x = (∆x ∩Hx)⊕ < Rx >.

3 Oblique if ∆x = (∆x ∩Hx)⊕ < Rx + vx >, con vx ∈ Hx \∆x .

If x is horizontal, then dim ∆⊥Λ = 2n − k . Otherwise,
dim ∆⊥Λ = 2n + 1− k .
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Characteristic distribution

Given a coisotropic submanifold ι : N −→ M, we define

η0 = ι∗η = ηTN

dη0 = ι∗(dη) = d(ι∗η)

We call characteristic distribution of N to

TN⊥Λ = ker(η0) ∩ ker(dη0).
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Contact Hamiltonian systems

Given a smooth function H on a contact manifold (M, η), we define its
Hamiltonian vector field as

XH = ]Λ(dH)− HR,

or equivalently,
[(XH) = dH − (R(H) + H)η.

In Darboux coordinates, we have

XH =
∂H

∂yi

∂

∂x i
− (

∂H

∂x i
+ yi

∂H

∂z
)
∂

∂yi
+ (yi

∂H

∂yi
− H)

∂

∂z

A contact Hamiltonian system is a triple (M, η,H), where (M, η) is a
contact manifold and H is a smooth real function on M.
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One can easily shows that

LXH
H = −R(H)H

which shows that the system does not preserve the energy.
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Let (M, η,H) a Hamiltonian contact system with Reeb vector field R and
Hamiltonian dynamics XH . Assume that M has dimension 2n + 1.
A direct computation shows that

LXH
η = −R(H)η

LXH
dη = −d(R(H))η −R(H)dη

LXH
(η ∧ dη) = −2R(H)η ∧ dη

LXH
(η ∧ (dη)2) = −3R(H)η ∧ (dη)2

and by induction one can prove that

LXH
(η ∧ (dη)n) = −(n + 1)R(H)η ∧ (dη)n

This prove that the contact volume is not preserved.
However,

Ω = H−(n+1)η ∧ (dη)n

is preserved.
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Morphisms between contact manifolds

A diffeomorphism between two contact manifolds F : (M, η)→ (N, ξ) is
a contactomorphism if

F ∗ξ = η.

A diffeomorphism F : (M, η)→ (N, ξ) is a conformal contactomorphism
if there exist a nowhere zero function f ∈ C∞(M) such that

F ∗ξ = f η.

A vector field X ∈ X(M) is a infinitesimal contactomorphism
(respectively infinitesimal conformal contactomorphism) if its flow φt
consists of contactomorphisms (resp. conformal contactomorphisms).
A vector field X is an infinitesimal contactomorphism if and only if

LXη = 0.

X is an infinitesimal conformal contactomorphism if and only if there
exists g ∈ C∞(M) such that

LXη = gη.

In this case, we say that (g ,X ) is an infinitesimal conformal
contactomorphism. 57 / 174



Next, we will investigate the relationship between Hamiltonian vector
fields and Legendrian submanifolds.

Theorem (Contactification of the tangent bundle)

Let (M, η) be a contact manifold. Let η̄ be a one form on TM × R such
that

η̄ = ηC + tηV ,

where t is the usual coordinate on R and ηC and ηV are the complete
and vertical lifts of η to TM. Then, (TM × R, η̄) is a contact manifold
with Reeb vector field R̄ = RV .

Theorem

Let (M, η) be a contact manifold, and let X ∈ X(M), f ∈ C∞(M). We
denote

X × f : M → TM × R
p 7→ (Xp, f (p)),

Then (f ,X ) is an infinitesimal conformal contactomorphism if and only if
(X × f ) ⊆ (TM × R, η̄) is a Legendrian submanifold. 58 / 174



This result states that the image of vector field XH , suitably included in
the contactified tangent bundle, is a Legendrian submanifold. In this
sense, Hamiltonian vector fields are particular cases of Legendrian
submanifolds.

Theorem

Let (M, η,H) be a contact Hamiltonian system. Then

(XH × (R(H))) ⊆ (TM × R, η̄)

is a Legendrian submanifold.

The result follows since

LXH
η = −R(H)η
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Theorem (Coisotropic reduction in contact manifolds)

Let ι : N −→ M be a coisotropic submanifold. Then TN⊥Λ is involutive.
If the quotient Ñ = TN/TN⊥Λ is a manifold and N does not have
horizontal points, let π : N → Ñ be the projection. Then there exists a
unique 1-form η̃ on Ñ such that η̃ = π∗(η) and (N, η̃) is a contact
manifold.
Furthermore, if N consists only of vertical points, then R̃ = π∗R is well
defined and is the correspondig Reeb vector field.
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The following theorem is very related to a similar result in

A.G. Tortorella: Rigidity of Integral Coisotropic Submanifolds of Contact
Manifolds. Letters in Mathematical Physics 108 3 (2018), 883-896.

Indeed, this result provides a coisotropic reduction theorem for regular
coisotropic submanifolds which coincides with our notion of coisotropic
submanifolds without horizontal points, but it is used in a slightly
differente context.
There is another, non-equivalent, widespread definition of contact
manifold. Some authors define contact manifolds (M, ξ) as
odd-dimensional manifolds M with a contact distribution ξ, that is, a
maximally non-integrable codimension 1 distribution. By the Frobenius
theorem, this means that ξ is given locally as the kernel of a contact
form η. Of course, every contact manifold (M, η) is a contact manifold in
this sense by taking ξ = ker η. Conversely, a contact distribution ξ is
globally the kernel of contact form if and only if ξ is co-orientable.
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Corollary

With the notations from previous theorem, assume that L ⊆ M is
Legendrian, N does not have horizontal points, and N and L have clean
intersection (that is, N ∩ L is a submanifold and T (N ∩ L) = TN ∩ TL).
Then L̃ = π(L) ⊆ Ñ is Legendrian.
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4: Symmetries and reduction
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Infinitesimal symmetries and Noether Theorem

Noether theorem is one of the most relevant results relating symmetry
groups of a Lagrangian system and conserved quantities of the
corresponding Euler-Lagrange equations. In the simplest view, the
existence of a cyclic coordinate implies the conservation of the
corresponding momentum. Indeed, if L = L(qi , q̇) does not depend on
the coordinate qj , then, using the Euler-Lagrange equation

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= 0, (27)

we deduce that

ṗj =
∂L

∂q̇j
= 0. (28)

Noether theorem can be described on a geometric framework.
Now, L is a function on the tangent bundle TQ of the configuration
manifold Q and X be a vector field on Q. Denote by XV and XC the
vertical and complete lifts of X to TQ. Then:
Theorem (Noether Theorem)
XC (L) = 0 if and only if XV (L) is a conserved quantity.
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In contact Lagrangian dynamics, the generalized Euler-Lagrange
equations look as

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
=

∂L

∂q̇j
∂L

∂z
, (29)

and if we insist to proceed as in the symplectic case, we would have

ṗj =
∂L

∂z
pj

Therefore,

pj = exp

∫
∂L

∂z
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Infinitesimal symmetries in contact Hamiltonian systems

Let (M, η,H) a contact Hamiltonian systems with Reeb vector field R.
The Jacobi bracket of two functions f , g ∈ C∞(M) is given by

{f , g} = Λ(df , dg)− fR(g) + gR(f )

where (Λ,E = −R) is the associated Jacobi structure to (M, η). Let Xf

the Hamiltonian vector field defined by a function f .
These two lemmas are essential for our purposes:
Lemma 1 We have

{f , g} = Xf (g) + gR(f )

This implies that
XH(f ) = {H, f } −R(H) f

so that an observable f dissipates at the same rate that the Hamiltonian
if and only if f and H commute (and in that case, f

H is a conserved
quantity.

Lemma 2 We have
{f , g} = −η([Xf ,Xg ])
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Proposition Let X be a vector field on M such that η(X ) = −f . Then

{H, f } = −η([XH ,X ]) = (LX η)(XH) + X (H)

Proof: If η(X ) = −f , then η(X − Xf ) = 0, so that X − Xf is in the
kernel of η.
Since

LX η = −R(H)η

we deduce that
(LX η)(Xf ) = (LX η)(X )

Therefore

{H, f } = −η([XH ,Xf ])(using Lemma 2)

= (LXH
η)(Xf )− XH(η(Xf ))(by using the Cartan formula)

= (LXH
η)(X )− XH(η(X ))

= −η([XH ,X ])(again by using the Cartan formula)

From the second equality, we have

−η([XH ,X ]) = (LX η)(XH)− X (η(XH))(by using the Cartan formula)

= (LXη)(XH) + X (H)
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The above Proposition suggests us to introduce the following definition.
Definition. A vector field X on M such that

η([XH ,X ]) = 0

will be called a dynamical symmetry for (M, η,H).

Using the above Lemmas and the previous Proposition, the following
result is immediate.

Theorem Let X be a vector field on M. Then X is a dynamical
symmetry for (M, η,H) if and only if η(X ) commutes with H.
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Infinitesimal symmetries in contact Lagrangian systems

In this case, we will take benefit fom the bundle structure of TQ × R.
For a vector field X = X i ∂

∂qi on Q, we will denote its vertical and

complete lifts to TQ (and with the natural extension to TQ × R by

XV = X i ∂

∂q̇i

XC =
∂

∂qi
+ q̇j

∂X i

∂qj
∂

∂q̇i

Next, let Y be a vector field on Q × R. If

Y = Y i ∂

∂qi
+ Z ∂

∂z

then its complete lift to T (Q × R) is

Y C = Y i ∂

∂qi
+ Z ∂

∂z
+ q̇j

∂Y i

∂qj
∂

∂q̇i

+q̇j
∂Z
∂qj

∂

∂ż
+ ż

∂Y i

∂z

∂

∂q̇i
+ ż

∂Z
∂z

∂

∂ż

Here (z , ż) are the bundle coordinates in TR ∼= R× R. 69 / 174



Since we are restricted to the submanifold TQ × R of T (Q × R) we
consider only such vector fields Y on Q ×R such that its complete lift to
T (Q × R) be tangent to TQ × R. This just happens when

∂Z
∂qi

= 0

that is, Z does not depend on the positions q. The restriction of such
Y C to TQ × R will be denoted by

Ȳ C = Y i ∂

∂qi
+ Z ∂

∂z
+ q̇j

∂Y i

∂qj
∂

∂q̇i

In such a case, we will denote by Ȳ V the vertical lift of the projection of
Y to Q, say

Ȳ V = Y i ∂

∂q̇i

which is obviouly tangent to TQ × R
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Next, we shall consider a contact Lagrangian system given by a
Lagrangian L : TQ × R −→ R. The corresponding contact Hamiltonian
system is (TQ × R, ηL,EL) with the obvious notations. calRL is the Reeb
vector field and ξL the Euler-Lagrange vector field.

Definition A vector field X on Q is called an infinitesimal symmetry of L
if XC (L) = 0.

Theorem A vector field X on Q is an infinitesimal symmetry of L if and
only if the function

f = XV (L)

commutes with the energy, that is,

ξL(f ) = −RL(EL)f =
∂L

∂z
f

Notice that if X is an infinitesimal symmetry of L, then XC is the
Hamiltonian vector field of XV (L), say

XC = XXV (L)
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The above definition can be slightly extended as follows

Definition Let Y a vector field on Q × R such that Y C is tangent to
TQ × R. Then Y is called a generalized infinitesimal symmetry of L if

Ȳ C (L) = −RL(f )L

where
f = Ȳ (L)−Z

and Z is the z-component of Y .

Theorem Let Y be a generalized infinitesimal symmetry of L. Then

f = Ȳ V (L)−Z

commutes with EL, and, conversely, in that case, Y is a generalized
infinitesimal symmetry of L.
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More types of infinitesimal symmetries

Definition (Cartan and Noether symmetries) A vector field Ỹ on
TQ × R is called a Cartan symmetry if

LỸ ηL = a ηL + dg ; Ỹ (EL) = aEL + gRL(EL)

for some functions a, g ∈ C∞(TQ × R).
A vector field Y on Q ×R such that Y C is tangent to TQ ×R is called a
Noether symmetry if Ȳ C is a Cartan symmetry.

Theorem
(1) If Y is a Noether symmetry such that

Ȳ C (L) = gC

then
f = Ȳ V (L)− gV

commutes with EL.
(2) If Ỹ is a Cartan symmetry such that

LỸ ηL = dg

then
ηY (Ỹ )− g

commutes with EL. 73 / 174



Definition (Lie symmetries). A vector field Y on Q × R such that Y C

is tangent to TQ × R and Ȳ C is a dynamical symmetry will be called a
Lie symmetry.

Theorem. If Y is a Lie symmetry, then

−ηL(Ȳ C ) = Ȳ V (L)−Z

commutes with EL.
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Momentum maps

The moment map is well-known in symplectic geometry. There is a
contact analog that we will descibe in the next slides.

Definition

Let (M, η) be a contact manifold and let G be a Lie group acting on M
by contactomorphisms. In analogy to the exact symplectic case, we
define the moment map J : M → g∗ such that

J(x)(ξ) = −η(ξM(x)),

where x ∈ M, ξ ∈ g and ξM is the the infinitesimal generator of the
action corresponding to ξ.
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We have
XĴξ

= ξM

where XĴξ
is the Hamiltonian vector field corresponding to the function

Ĵξ(x) =< J(x), ξ >.
The moment map defined is equivariant under the coadjoint action. That
is, we have

Ad∗g−1 ◦ J = J ◦ g

g ∈ G , α ∈ g∗ and ξ ∈ g, where Ad∗ : G → Aut(g∗) is the coadjoint
representation.
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Proposition

Let (M, η) be a contact manifold on which a Lie group G acts by
contactomorphisms. Let µ ∈ g∗ be a regular value of the moment map J.
Then, for all x ∈ J−1(µ) we have

Tx(Gµx) = Tx(Gx) ∩ Tx(J−1(µ)),

where Gµ = {g ∈ G | Ad∗g−1µ = µ} is the isotropy group of µ with
respect to the coadjoint action.
We also have

Tx(J−1(µ)) = Tx(Gx)⊥dη.

In particular, if G = Gµ, then Tx(Gx) ⊆ Tx(J−1(µ)) and Tx(J−1(µ)) is
coisotropic and consists of vertical points. Furthermore

Tx(J−1(µ))
⊥Λ

= Tx(Gx)
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Contact reduction

Let (M, η) be a contact manifold on which a Lie group G acts freely and
properly by contactomorphisms and let J be the momentum map. Let
µ ∈ g be a regular value of J which is a fixed point of G under the
coadjoint action. Then, Mµ = J−1(µ)/G has a unique contact form ηµ
such that

π∗µηµ = ι∗µη,

where πµ : J−1(µ)→ Mµ is the canonical projection and
ιµ : J−1(µ)→ M is the inclusion.
Also the Reeb vector field of the quotient Rµ = π∗µR is the projection of
the Reeb vector field R of (M, η).
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Dynamics reduction

Let G be a group acting by contactomorphisms on (M, η,H) such that H
is G -invariant. Then, (Mµ, ηµ,Hµ) is a Hamiltonian system, where Hµ is
quotient of H by the action of G , that is

πµ∗XH |J−1(µ)
= XHµ

J−1(µ)

ιµ

Hµ

H

6

?
Mµ

πµ

@
@
@
@@R

�
�
�
���

R

M
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Exercise 9

Construct a natural momentum map for this canonical contact structure
(T ∗Q × R, ηQ), when G is a Lie group acting on Q.
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5: Hamilton-Jacobi theory
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Classical Hamilton-Jacobi theory (geometric version)

The standard formulation of the Hamilton-Jacobi problem is to find a
function S(t, qA) (called the principal function) such that

∂S

∂t
+ h(qA,

∂S

∂qA
) = 0. (30)

If we put S(t, qA) = W (qA)− tE , where E is a constant, then W satisfies

h(qA,
∂W

∂qA
) = E ; (31)

W is called the characteristic function.
Equations (30) and (31) are indistinctly referred as the Hamilton-Jacobi
equation.
R. Abraham, J.E. Marsden: Foundations of Mechanics (2nd edition).
Benjamin-Cumming, Reading, 1978.
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Let M be the configuration manifold, and T ∗M its cotangent bundle
equipped with the canonical symplectic form

ωM = dqA ∧ dpA

where (qA) are coordinates in M and (qA, pA) are the induced ones in
T ∗M.
Let h : T ∗M −→R a hamiltonian function and Xh the corresponding
hamiltonian vector field:

iXh
ωM = dh

The integral curves of Xh, (qA(t), pA(t)), satisfy the Hamilton equations:

dqA

dt
=

∂h

∂pA
,
dpA
dt

= − ∂h

∂qA
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Let λ be a closed 1-form on M, say dλ = 0; (then, locally λ = dW ).

Hamilton-Jacobi Theorem
The following conditions are equivalent:

(i) If σ : I → M satisfies the equation

dqA

dt
=

∂h

∂pA

then λ ◦ σ is a solution of the Hamilton equations;

(ii) d(h ◦ λ) = 0
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Define a vector field on M:

Xλ
h = TπM ◦ Xh ◦ λ

T ∗M

πM

��

Xh // T (T ∗M)

TπM

��
M

λ

==

Xλh // TM

The following conditions are equivalent:

(i) If σ : I → M satisfies the equation

dqA

dt
=

∂h

∂pA

then λ ◦ σ is a solution of the Hamilton equations;

(i)’ If σ : I → M is an integral curve of Xλ
h , then λ ◦ σ is an integral curve of

Xh;

(i)” Xh and Xλ
h are λ-related, i.e.

Tλ(Xλ
h ) = Xh ◦ λ
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Hamilton-Jacobi Theorem Let λ be a closed 1-form on M. Then the
following conditions are equivalent:

(i) Xλ
h and Xh are λ-related;

(ii) d(h ◦ λ) = 0

If
λ = λA(q) dqA

then the Hamilton-Jacobi equation becomes

h(qA, λA(qB)) = const.

and we recover the classical formulation when

λA =
∂W

∂qA
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The Hamiltonian–Jacobi theory for contact Hamiltonian systems
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Let H = H(qi , pi , z) be a Hamiltonian with contact Hamilton equations

dqi

dt
=
∂H

∂pi
,
dpi
dt

= −(
∂H

∂qi
+ pi

∂H

∂z
) ,

dz

dt
= pi

∂H

∂pi
− H (32)

or

dqi

dt
=
∂H

∂pi
,
dpi
dt

= −(
∂H

∂qi
+ pi

∂H

∂z
) ,

dz

dt
= pi

∂H

∂pi
(33)

Let S = S(qi ) be a function such that

H(qi ,
∂S

∂qi
,S(qi )) = k (34)

where k is a constant, then the curve

(qi (t),
∂S

∂qi
(t),S(qi (t))

is a solution of (33), assuming that

dqi

dt
=
∂H

∂pi
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What is the geometric version of these equations?

What kind of submanifolds now play the role of Lagrangian submanifolds?

In this talk we will give some answers, contained in the following papers:

de León, M.; Sardón, C.: Cosymplectic and contact structures for
time-dependent and dissipative Hamiltonian systems. J. Phys. A 50
(2017), no. 25, 255205, 23 pp.

de León, M.; Lainz, M.; Muñiz-Brea, A.: The HamiltonJacobi theory for
contactHamiltonian systems. arXiv preprint arXiv:2103.17017
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Given a contact 2n + 1 dimensional manifold (M, η), we can consider the
following distributions on M, that we will call vertical and horizontal
distribution, respectively:

H = ker η,

V = ker dη.

We have a Withney sum decomposition

TM = H⊕ V,

and, at each point x ∈ M:

TxM = Hx ⊕ Vx .

We will denote by πH and πV the projections onto these subspaces. We
notice that dimH = 2n and dimV = 1, and that (dη)|H is
non-degenerate and V is generated by the Reeb vector field R.
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Definition

1 A diffeomorphism between two contact manifolds
F : (M, η)→ (N, ξ) is a contactomorphism if

F ∗ξ = η.

2 A diffeomorphism F : (M, η)→ (N, ξ) is a conformal
contactomorphism if there exist a nowhere zero function
f ∈ C∞(M) such that

F ∗ξ = f η.

3 A vector field X ∈ X(M) is an infinitesimal contactomorphism
(respectively infinitesimal conformal contactomorphism) if its flow φt
consists of contactomorphisms (resp. conformal
contactomorphisms).
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Therefore, we have

Proposition

1 A vector field X is an infinitesimal contactomorphism if and only if

LXη = 0.

2 X is an infinitesimal conformal contactomorphism if and only if there
exists g ∈ C∞(M) such that

LXη = gη.

In this case, we say that (g ,X ) is an infinitesimal conformal
contactomorphism.
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If (M, η) is a (2n + 1)-dimensional contact manifold and take Darboux
coordinates (q1, . . . , qn, p1, . . . , pn, z), then

V =<
∂

∂z
> , H =< Ai ,B

i >

where

Ai =
∂

∂qi
− pi

∂

∂z

B i =
∂

∂pi
.

{A1,B
1, . . . ,An,B

n,R} and {dq1, dp1, . . . , dq
n, dpn, η} are dual basis.

We also have
[Ai ,B

i ] = −R
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Contact manifolds as Jacobi structures

A Jacobi manifold is a triple (M,Λ,E ), where Λ is a bivector field (a
skew-symmetric contravariant 2-tensor field) and E ∈ X(M) is a vector
field, so that the following identities are satisfied:

[Λ,Λ] = 2E ∧ Λ , LEΛ = [E ,Λ] = 0,

where [·, ·] is the SchoutenNijenhuis bracket. The Jacobi bracket on
C∞(M) is defined by:

{f , g} = Λ(df , dg) + fE (g)− gE (f ).

This bracket is bilinear, antisymmetric, and satisfies the Jacobi identity.
Furthermore, it fulfills the weak Leibniz rule:

supp({f , g}) ⊆ supp(f ) ∩ supp(g).

That is, (C∞(M), {·, ·}) is a local Lie algebra in the sense of Kirillov.
Conversely, given a local Lie algebra (C∞(M), {·, ·}), we can find a
Jacobi structure on M such that the Jacobi bracket coincides with the
algebra bracket.
The weak Leibniz rule is equivalent to this identity:

{f , gh} = g{f , h}+ h{f , g}+ ghE (f )
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Given a contact manifold (M, η) we can define the associated Jacobi
structure (M,Λ,E ) by

Λ(α, β) = −dη(]α, ]β), E = −R,

where ] = [̄−1. For an arbitrary function f on M we can prove that the
Hamiltonian vector field Xf with respect to the contact structure η
coincides with the one defined by its associated Jacobi structure, say

Xf = ]Λ(df )− fR

where ]Λ is the vector bundle morphism from tangent covectors to
tangent vectors defined by Λ, i.e.

< ]Λ(α), β >= Λ(α, β),

for all covectors α and β.
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Submanifolds

As in the case of symplectic manifolds, we can consider several interesting
types of submanifolds of a contact manifold (M, η). To define them, we
will use the following notion of complement for contact structures:
Let (M, η) be a contact manifold and x ∈ M. Let ∆x ⊂ TxM be a linear
subspace. We define the contact complement of ∆x

∆x
⊥Λ = ]Λ(∆x

o),

where ∆x
o = {αx ∈ T ∗x M | αx(∆x) = 0} is the annihilator.

We extend this definition for distributions ∆ ⊆ TM by taking the
complement pointwise in each tangent space.
Here, Λ is the associated 2-tensor according to the previous section.

Definition

Let N ⊆ M be a submanifold. We say that N is:

Isotropic if TN ⊆ TN⊥Λ .

Coisotropic if TN ⊇ TN⊥Λ .

Legendrian or Legendre if TN = TN⊥Λ .
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The coisotropic condition can be written in local coordinates as follows.
Let N ⊆ M be a k-dimensional manifold given locally by the zero set of
functions φa : U → R, with a ∈ {1, , k}.
We have that

TN⊥λ =< Za | a = 1, . . . , k >

where
Za = ]Λ(dφa)

Therefore, N is coisotropic if and only if, Za(φb) = 0 for all a, b.
Notice that

Za =

(
∂φa
∂qi

+ pi
∂φa
∂z

)
∂

∂pi
+
∂φa
∂pi

(
∂

∂qi
− pi

∂

∂z

)
. (35)

According to (35), we conclude that N is coisotropic if and only if(
∂φa
∂qi

+ pi
∂φa
∂z

)
∂φb
∂pi

+
∂φa
∂pi

(
∂φb
∂qi
− pi

∂φb
∂z

)
= 0. (36)
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Using the above results, one can easily prove the following
characterization of a Legendrian submanifold.
Proposition Let (M, η) be a contact manifold of dimension 2n + 1. A
submanifold N of M is Legendrian if and only if it is a maximal integral
manifold of ker η (and then it has dimension n).

Consider a function f : Q −→ R and let ηQ = dz − ρ∗θQ the canonical
contact structure on T ∗Q × R. Here ρ : T ∗Q × R −→ T ∗Q is the
canonical projection, and θQ is the canonical Liouville form on T ∗Q. In
bundle coordinates (qi , pi , z), we have

ηQ = dz − pi dq
i

so that (qi , pi , z) are Darboux coordinates.
We denote by j1f : Q −→ T ∗Q × R the 1-jet of f , say

j1f (qi ) =

(
qi ,

∂f

∂qi
, f (qi )

)
Then, one immediately checks that j1f (Q) is a Legendrian submanifold
of (T ∗Q × R, ηQ). Moreover, we have
Proposition A section γ : Q −→ T ∗Q × R of the canonical projection
T ∗Q × R −→ Q is a Legendrian submanifold of (T ∗Q × R, ηQ) if and
only if γ is locally the 1-jet of a function f : Q −→ R.
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The above result is the natural extension of the well-known fact that a
section σ of the cotangent bundle πQ : T ∗Q −→ Q is a Lagrangian
submanifold with respect to the canonical symplectic structure
ωQ = −dθQ on T ∗Q if and only if σ is a closed 1-form (and hence,
locally exact).
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The Hamilton-Jacobi equations for a Hamiltonian vector field

We consider the extended phase space T ∗Q × R, and a Hamiltonian
function H : T ∗Q × R→ R (see the diagram below).

T ∗Q × R

ρ

��

z

""

H

��
T ∗Q R

Recall that we have local canonical coordinates {qi , pi , z}, i = 1, . . . , n
such that the one-form is ηQ = dz − ρ∗θQ , θQ being the canonical 1-form
on T ∗Q, can be locally expressed as follows

ηQ = dz −
n∑

i=1

pidq
i . (37)

(T ∗Q × R, ηQ) is a contact manifold with Reeb vector field R = ∂
∂z .
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Consider the Hamiltonian vector field XH for a given Hamiltonian
function, say

XH = ]Λ(dH) + HR. (38)

In coordinates, it reads

XH =
n∑

i=1

∂H

∂pi

∂

∂qi
−

n∑
i=1

(
pi

∂H

∂z
+

∂H

∂qi

)
∂

∂pi
+

n∑
i=1

(
pi

∂H

∂pi
− H

)
∂

∂z
(39)

We also have
[̄(XH) = dH − (R(H) + H)η,

where [ is the isomorphism previously defined. We also have that

η(XH) = −H. (40)

Recall that (T ∗Q × R,Λ,−R) is a Jacobi manifold with Λ given in the
usual way.
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The contact structure provides us with the contact Hamilton equations.

q̇i =
∂H

∂pi
,

ṗi = −∂H
∂qi
− pi

∂H

∂z
,

ż = pi
∂H

∂pi
− H.

(41)

for all i = 1, . . . , n.
Consider γ a section of π : T ∗Q × R→ Q × R, i.e., π ◦ γ = idQ×R. We
can use γ to project XH on Q × R just defining a vector field X γ

H on
Q × R by

X γ
H = Tπ ◦ XH ◦ γ. (42)
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The following diagram summarizes the above construction

T ∗Q × R

π

��

XH // T (T ∗Q × R)

Tπ

��
Q × R

γ

==

XγH // T (Q × R)

Assume that in local coordinates we have

(qi , z) 7→ γ(qi , z) = (qi , γj(q
i , z), z)

We can compute Tγ(X γ
H ) and obtain

Tγ(X γ
H ) =

∂H

∂pi

∂

∂qi
+

(
∂H

∂pi

∂γj
∂qi

+

(
γi
∂H

∂pi
− H

)
∂γj
∂z

)
∂

∂pj
+

(
γi
∂H

∂pi
− H

)
∂

∂z
(43)
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Therefore, from (39) and (43), we have that

XH ◦ γ = Tγ(X γ
H )

if and only if

∂H

∂qj
+
∂γj
∂qi

+
∂H

∂pi
γj
∂H

∂z
+ γi

∂γj
∂z

∂H

∂pi
− H

∂γj
∂z

= 0. (44)

Assume now that

1 γ(Q × R) is a coisotropic submanifold of (T ∗Q × R, ηQ);

2 γz(Q) is a Lagrangian submanifold of (T ∗Q, ωQ), for any z ∈ R, where
γz(q) = ρ ◦ γ(q, z).

Notice that the above two conditions imply that γ(Q × R) is foliated by
Lagrangian leaves γz(Q), z ∈ R.

We will discuss the consequences of the above conditions.
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The submanifold γ(Q × R) is locally defined by the functions

φi = pi − γi = 0

Therefore, the first condition is equivalent to

∂γi
∂qj
− γj

∂γi
∂z
− ∂γj
∂qi

+ γi
∂γj
∂z

= 0 (45)

If, in addition, γz(Q) is Lagrangian submanifold for any fixed z ∈ R, then
we obtain

∂γi
∂qj
− ∂γj
∂qi

= 0 (46)

and, using again (45), we get

γj
∂γi
∂z
− γi

∂γj
∂z

= 0 (47)
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Under the above conditions (using (46) and (47)), (44) becomes

∂H

∂qj
+
∂H

∂pi

∂γi
∂qj

+ γj

(
∂H

∂z
+
∂H

∂pi

∂γi
∂z

)
− H

∂γj
∂z

= 0. (48)

We can write down eq (48) in a more friendly way. First of all, consider
the following functions and 1-forms defined on Q × R:

1

γo =
∂H

∂z
+
∂H

∂pi

∂γi
∂z

2

d(H ◦ γz) =

(
∂H

∂qj
+
∂H

∂pi

∂γi
∂qj

)
dqj

3

i ∂
∂z

(d(γ∗θQ)) =
∂γj
∂z

dqj

Therefore, eq (48) is equivalent to

d(H ◦ γz) + γo(γ∗θQ)− (H ◦ γ)(i ∂
∂z

(d(γ∗θQ))) = 0. (49)
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Theorem

Assume that a section γ of the projection T ∗Q × R −→ Q × R is such
that γ(Q ×R) is a coisotropic submanifold of (T ∗Q ×R, ηQ), and γz(Q)
is a Lagrangian submanifold of (T ∗Q, ωQ), for any z ∈ R. Then, the
vector fields XH and X γ

H are γ-related if and only if (48) holds
(equivalently, (49) holds).

Equations (48) and (49) are indistinctly referred as a Hamilton–Jacobi
equation with respect to a contact structure. A section γ fullfilling the
assumptions of the theorem and the Hamilton-Jacobi equation will be
called a solution of the Hamilton–Jacobi problem for H.
Notice that if γ is a solution of the Hamilton–Jacobi problem for H, then
XH is tangent to the coisotropic submanifold γ(Q×R), but not necesarily
to the Lagrangian submanifolds γz(Q), z ∈ R. This occurs when

XH(z − z0) = 0

for any z0, that is, if and only if

H ◦ γz0 = γi
∂H

∂pi

We call γ an strong solution of the Hamilton–Jacobi problem.
107 / 174



A characterization of conditions on the submanifolds γ(TQ ×R), γz(TQ)
can be given as follows. Let σ : Q × R→ Λk(T ∗Q) be a z-dependent
k-form on Q. Let dQσ be the exterior derivative at fixed z , that is

dQσ(qi , z) = dσz(qi ), (50)

where σz = σ(·, z). In local coordinates, we have

dQ f =
∂f

∂qi
dqi ,

dQ(αidq
i ) =

∂αj

∂qi
dqi ∧ dqj ,

(51)

where f : Q × R→ R is a function and α = αidq
i : Q × R→ Λ1(T ∗Q)

is a z-dependent 1-form.

Theorem

Let γ be a section of T ∗Q × R over Q × R. Then γ(Q × R) is a
coisotropic submanifold and γz0 (TQ) are Lagrangian submanifolds for all
z0 if and only if dQγ = 0 and L ∂

∂z
γ = σγ for some function

σ : Q × R→ R. That is, there exists locally a function f : Q × R→ R
such that dQ f = γ and dQ

∂f
∂z = σdQ f .
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Proof
Fix z0 ∈ R, then, γz0 (Q) is Lagrangian if and only if γz0 is closed, hence
dγz0 = 0, so all γz0 (Q) are Lagrangian if and only if dQγ = 0. By the
Poincar Lemma, locally γ = dQ f ,
Now also assume that γ(Q × R) is coisotropic. Then, equation (47) can
be written as

γ ∧ ∂/∂zγ = 0, (52)

or, equivalently, that γ and ∂/∂zγ are proportional.
Locally, we obtain that dQ

∂f
∂z = σdQ f .
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Complete solutions

Next, we shall discuss the notion of complete solutions of the
Hamilton–Jacobi problem for a Hamiltonian H.

Definition

A complete solution of the Hamilton–Jacobi equation for a Hamiltonian
H is a diffeomorphism Φ : Q ×R×Rn → T ∗Q ×R such that for any set
of parameters λ ∈ Rn, λ = (λ1, . . . , λn), the mapping

Φλ : Q × R → T ∗Q × R
(qi , z) 7→ Φλ(qi , z) = Φ(qi , z , λ)

(53)

is a solution of the Hamilton–Jacobi equation. If, in addition, any Φλ is
strong, then the complete solution is called an strong complete solution.

We define functions fi such that for a point p ∈ T ∗Q × R, it is satisfied

fi (p) = πi ◦ α ◦ Φ−1(p). (54)

and α : Q × R× Rn → Rn is the canonical projection.
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The first immediate result is that

Im Φλ = ∩ni=1 f
−1
i (λi )

where λ = (λ1, · · · , λn). In other words,

Im Φλ = {x ∈ T ∗Q × R | fi (x) = λi , i = 1, · · · , n}

Therefore, since XH is tangent to any of the submanifolds Im Φλ, we
deduce that

XH(fi ) = 0

So, these functions are conserved quantities.
Moreover, we can compute

{fi , fj} = Λ(dfi , dfj)− fiR(fj) + fjR(fi )

But
Λ(dfi , dfj) = ]Λ(dfi )(fj) = 0

since (T ImΦλ)⊥ = ]Λ((T ImΦλ)o) ⊂ T ImΦλ, so

{fi , fj} = −fiR(fj) + fjR(fi ) (55)
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Theorem

There exist no linearly independent commuting set of first-integrals in
involution (68) for a complete strong solution of the Hamilton–Jacobi
equation.

Proof: If all the particular solutions are strong, then the Reeb vector
field R will be transverse to the coisotropic submanifold Φλ(Q × R).
Indeed, if R is tangent to that submanifold, we would have

R(pi − (Φλ)i ) = −∂(Φλ)i
∂z

where Φλ(qi , z) = (qi , (Φλ)i , z). So, Φλ does not depend on z , hence it
cannot be a diffeomorphism.
Therefore, if the brackets {fi , fj} vanish, then we woul obtain that the
functions fi cannot be linearly independent. Indeed, we should have

fiR(fj) = fjR(fi )

for all i , j . But this would imply that fi and fj are linearly dependent in
the case λ = (0, . . . , 0).

�
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An alternative approach

Instead of considering sections of π : T ∗Q × R −→ Q × R as above, we
could consider a section of the canonical projection π : T ∗Q × R −→ Q,
say γ : Q → T ∗Q × R.
In local coordinates, we have

(qi ) 7→ γ(qi ) = (qi , γj(q
i ), γz(qi ))

We want γ to fulfill
XH ◦ γ = Tγ ◦ X γ

H , (56)

where X γ
H = Tπ ◦ XH ◦ γ. Using the local expression of XH we have

X γ
H =

∑n
i=1

(
∂H
∂pi
◦ γ
)

∂
∂qi , and equation (56) holds if and only if:
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−
(
γi
∂H

∂z
+
∂H

∂qi

)
=

n∑
j=1

∂H

∂pj

∂γi
∂qj

, i = 1, . . . , n, (57)

n∑
i=1

γi
∂H

∂pi
− H =

n∑
i=1

∂H

∂pi
γzq

i . (58)
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Now, notice that
γ̃ = ρ ◦ γ

is a 1-form on Q. Then, we locally have γ̃ = γi (q) dqi .
Next, we assume that γ(Q) is a Legendrian submanifold of
(T ∗Q × R, ηQ). This implies that γ̃(Q) is a Lagrangian submanifold of
(T ∗Q, ωQ).
But γ(Q) is a Legendrian submanifold if and only if it is locally the 1-jet
of a function, namely γ = j1γz , where we consider γz as a function from
Q to R. In other words, we have:

γi =
∂γz
∂qi

(59)

If we assume that the section γ fulfills the above condition, we can see
that equations (57) become

H ◦ γ = 0. (60)

Definition

Assume that a section γ such that γ(Q) is a Legendrian submanifold of
(T ∗Q × R, ηQ) and γ̃(Q) is a Lagrangian submanifold of (T ∗Q, ωQ).
Then γ is called a solution of the Hamilton-Jacobi problem for the
contact Hamiltonian H if equation (60) holds. 115 / 174



The Hamilton-Jacobi equations for the evolution vector field: A
first approach

Assume that EH is the evolution vector field defined for a Hamiltonian
function H : T ∗Q × R −→ R. Then, we have

EH =
∂H

∂pi

∂

∂qi
−
(
∂H

∂qi
+ pi

∂H

∂z

)
∂

∂pi
+ pi

∂H

∂pi

∂

∂z
(61)

Assume that γ is a section of the canonical projection
π : T ∗Q × R −→ Q × R, say γ : Q × R→ T ∗Q × R.
In local coordinates we have

(qi , z) 7→ γ(qi ) = (qi , γj(q
i ), z)

Therefore, we can define the projected evolution vector field

EγH = Tπ ◦ EH ◦ γ.

We have that EH ◦ γ = Tγ(EγH) if and only if

∂H

∂qj
+
∂H

∂pi

∂γj
∂qi

+ γi
∂H

∂pi

∂γj
∂z

+ γj
∂H

∂z
= 0 (62)
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Assume now that

1 γ(Q × R) is a coisotropic submanifold of (T ∗Q × R, ηQ);

2 γz(Q) is a Legendrian submanifold of (T ∗Q × R, ηQ), for any z ∈ R,
where γz(q) = γ(q, z).

Then, a direct computation shows that (62) becomes

d(H ◦ γ) + γo γ
∗(θQ) = 0 , (63)

where

γo =
∂H

∂z
+
∂H

∂pi

∂γi
∂z

Theorem

Assume that a section γ of the projection T ∗Q × R −→ Q × R is such
that γ(Q ×R) is a coisotropic submanifold of (T ∗Q ×R, ηQ), and γz(Q)
is a Legendrian submanifold of (T ∗Q × R, ηQ), for any z ∈ R. Then, the
vector fields EH and EγH are γ-related if and only if (63) holds.

Equation (63) is referred as a Hamilton–Jacobi equation for the evolution
vector field. A section γ fullfilling the assumptions of the theorem and
the Hamilton-Jacobi equation will be called a solution of the
Hamilton–Jacobi problem for the evolution vector field of H. 117 / 174



An alternative approach

Now γ is a section of the canonical projection π : T ∗Q × R −→ Q, say
γ : Q → T ∗Q × R. In local coordinates we have

(qi ) 7→ γ(qi ) = (qi , γj(q
i ), γz(qi ))

As in the above sections, we define the projected evolution vector field

EγH = Tπ ◦ EH ◦ γ.

A direct computation shows that EH ◦ γ = Tγ(EγH) if and only if

∂H

∂qj
+
∂H

∂pi

∂γj
∂qi

+ γj
∂H

∂z
= 0 (64)

∂H

∂pi

(
∂γz
∂qi
− γi

)
= 0 (65)
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If we assume that γ = j1f , for some function f : Q −→ R (or,
equivalently, γ(Q) is a Legendrian submanifold of (T ∗Q × R, ηQ)), then

γi =
∂γz
∂qi

and so (64) is fulfilled and (64) becomes

d(H ◦ γ) = 0. (66)

Notice that f and γz define (locally) the same 1-jet.
Therefore, we have the following.

Theorem

Assume that a section γ of the projection T ∗Q × R→ Q is such that
γ(Q) is a Legendrian submanifold of (T ∗Q × R, ηQ). Then, the vector
fields EH and EγH are γ-related if and only if (66) holds.

Equation (66) is referred as a Hamilton–Jacobi equation for the evolution
vector field. A section γ fullfilling the assumptions of the theorem and
the Hamilton-Jacobi equation will be called a solution of the
Hamilton–Jacobi problem for the evolution vector field of H.

119 / 174



Complete solutions

As in the case of the Hamiltonian vector field, we can consider complete
solutions for the evolution vector field.

Definition

A complete solution of the Hamilton–Jacobi equation for the evolution
vector field EH of a Hamiltonian H on a contact manifold (M, η) is a
diffeomorphism Φ : Q × R× Rn → T ∗Q × R such that for any set of
parameters λ = (λ0, λ1, . . . , λn) ∈ R× Rn, the mapping

Φλ : Q → T ∗Q × R
(qi ) 7→ Φλ(qi ) = Φ(qi , λ0, λ1, . . . , λn)

(67)

is a solution of the Hamilton–Jacobi equation.

For simplicity, we will use the notation (λα , α = 0, 1, . . . , n).
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As in the previous case, we define functions fα such that for a point
p ∈ T ∗Q × R, it is satisfied

fα(p) = πα ◦ Φ−1(p). (68)

where πα : Q ×R×Rn → R is the canonical projection onto the α factor.
A direct computation shows that

Im Φλ = ∩nα=0 f
−1
α (λα)

In other words,

Im Φλ = {x ∈ T ∗Q × R | fα(x) = λα, α = 0, · · · , n}

Therefore, since under our hypothesis, EH is tangent to any of the
submanifolds Im Φλ, we deduce that

EH(fα) = 0

So, these functions are conserved quantities for the evolution vector field.

121 / 174



Moreover, we can compute

{fα, fβ} = Λ(dfα, dfβ)− fαR(fβ) + fβR(fα)

But
Λ(dfα, dfβ) = ]Λ(dfα)(fβ) = 0

since (T ImΦλ)⊥ = T ImΦλ, so

{fα, fβ} = −fαR(fβ) + fβR(fα) (69)
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Theorem

There exist no linearly independent commuting set of first-integrals in
involution (68) for a complete solution of the Hamilton–Jacobi equation
for the evolution vector field.

Proof: Since the images of the sections are Legendrian then they are
integral submanifolds of ker ηQ . So, the Reeb vector field R will be
transverse to them, and consequently, there is at least some index α0

such that
R(fα0 ) 6= 0

Therefore, if all the brackets {fα, fβ} vanish, then we woul obtain that
the functions fα cannot be linearly independent.

�
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Examples

Particle with linear dissipation
Consider the Hamilltonian H

H(q, p, z) =
p2

2m
+ V (q) + λz , (70)

where λ ∈ R is a constant. The extended phase space is T ∗Q × R ' R3.
The Hamiltonian and evolution vector field are given by

XH =
p

m

∂

∂q
−
(
∂V

∂q
+ λz

)
∂

∂p
+

(
p2

2m
− V (q)− λz

)
∂

∂z
, (71)

EH =
p

m

∂

∂q
−
(
∂V

∂q
+ λz

)
∂

∂p
+

p2

m

∂

∂z
. (72)

Assume that γ : Q → T ∗Q × R is a section of the canonical projection
T ∗Q × R→ Q, that is,

γ(q) = (q, γp(q), γz(q)). (73)
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We assume that γ(Q) is a Legendrian submanifold of T ∗Q × R; then,

γp(q) =
∂γz
∂q

, (74)

and EH and EγH are γ-related if and only if

H ◦ γ = k , (75)

for a constant k ∈ R. Then, the HamiltonJacobi equation becomes

H(γ(q)) =
γ2
p

2m
+ V (q) + λγz = k , (76)

or, equivalently, (
∂γz
∂q

)2

2m
+ V (q) + λγz = k , (77)

which is a linear ordinary differential equation.
A general solution of the HamiltonJacobi equation (77) is then

γp(q) = exp(−2mλq)

∫
(2mk − 2mV (q)) exp(2mλq)dq. (78)
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6: Applications to thermodynamics
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Consider a simple thermodynamic system, for instance, gas in a confined
compartment with volume V and pressure P ta temperature T .
The state properties of the gas are described by a 2-dimensional
submanifold of the thermodynamic phase space, R5, with coordinates:

E energy

S entropy

V ,P, and T

This submanifold is a Legendre submanifold of the contact manifold
(R5, η), where

η = dE − TdS + PdV

Here, E = E (S ,V ) and the equations of the Legendre submanifold are

T =
∂E

∂S
, −P =

∂E

∂V

E ,S ,V are called extensive variables
T ,P are called intensive variables
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Applications to thermodynamics

A.A. Simoes, D. Mart́ın de Diego, M. de León, M. Lainz-Valcázar:
Contact geometry for simple thermodynamical systems with friction.
Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 476 2241 (2020) doi.org/10.1098/rspa.2020.0244.

A.A. Simoes, D. Mart́ın de Diego, M. de León, M. Lainz-Valcázar: The
geometry of some thermodynamic systems. arXiv preprint
arXiv:2012.07404 (to appear in an Springer book, 2021).
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In this second part, we will introduce a differential geometric framework
that incorporates in a very natural way fundamental thermodynamical
concepts as the free energy and the rate of entropy production.
Typically, in the previous literature, this description needs to introduce
appropriate Poisson and dissipation brackets with combined properties
that allows the two laws of thermodynamics to be satisfied.
One of the most successful methods are based on the introduction of
metriplectic structures:

Allan N. Kaufman. Dissipative Hamiltonian systems: a unifying principle.
Phys. Lett. A, 100(8):419–422, 1984.
Philip J. Morrison. A paradigm for joined Hamiltonian and dissipative
systems. volume 18, pages 410–419. 1986. Solitons and coherent
structures (Santa Barbara, Calif., 1985).

coupling a Poisson and a gradient structure, where the entropy S is now
constructed from a Casimir function of the Poisson structure.
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Other approaches like in

B. J. Edwards and A. N. Beris. Noncanonical Poisson bracket for
nonlinear elasticity with extensions to viscoelasticity. J. Phys. A,
24(11):2461–2480, 1991.
B. J. Edwards and A. N. Beris. Noncanonical Poisson bracket for
nonlinear elasticity with extensions to viscoelasticity. J. Phys. A,
24(11):2461–2480, 1991.

use similar techniques, called single generation formalism introducing a
generalized bracket which is naturally divided into two parts: a
non-canonical Poisson bracket and a new dissipation bracket.

The derived structures are capable of reproducing both reversible and
irreversible evolutions providing a unifying formalism for many systems
ruled by the laws of thermodynamics.

These approaches have proved to be very useful for the description of
complex thermodynamical systems and also facilitate their numerical
integration.
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Recently, Gay-Balmaz and Yoshimura

F. Gay-Balmaz and H. Yoshimura. A Lagrangian variational formulation
for nonequilibrium thermodynamics. Part I: Discrete systems. Journal of
Geometry and Physics, 111:169–193, January 2017.
F. Gay-Balmaz and H. Yoshimura. From Lagrangian Mechanics to
Nonequilibrium Thermodynamics: A Variational Perspective. Entropy,
21(1):8, January 2019.

have introduced a variational principle for the description of
thermodynamical systems.

Their formulation extends the Hamilton principle of classical mechanics
to include irreversible processes by introducing additional
phenomenological and variational constraints.

131 / 174



A more geometrical approach is based on the use of contact geometry;
indeed, the thermodynamical phase space is equipped with a contact
structure:

Using the contact structure, it is possible to associate to each function f ,
a Hamiltonian vector field Xf which is the infinitesimal generator of a
contact transformation.

In this framework, the manifold of equilibrium states is represented by a
Legendre submanifold N and the Hamiltonian vector field Xf is tangent
to N if and only if the function f vanishes on N, that is, the Legendre
submanifold is contained on the zero level set of the Hamiltonian
function.

The flow of Xf restricted to the Legendrian submanifold is interpreted as
thermodynamical processes.

R. Mrugala, J. D. Nulton, J. Ch. Schon, and P. Salamon. Contact
structure in thermodynamic theory. Reports on Mathematical Physics,
29(1):109–121, February 1991.
R. Mrugala. Continuous contact transformations in thermodynamics. In
Proceedings of the XXV Symposium on Mathematical Physics (Torun,
1992), vol. 33, pages 149–154, 1993. 132 / 174



Another approach to the dynamics of thermodynamical processes is the
one used in

R. Balian and P. Valentin. Hamiltonian structure of thermodynamics
with gauge. The European Physical Journal B-Condensed Matter and
Complex Systems, 21(2):269–282, 2001.
A. Van der Schaft and B. Maschke. Geometry of thermodynamic
processes. Entropy, 20(12):925, 2018.

which is based on homogeneous symplectic Hamiltonian systems, and is
completely equivalent to the contact Hamiltonian vector field approach.

A recent paper is

Arjan van der Schaft: Liouville geometry of classical thermodynamics.
arXiv:2102.05493
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Contact geometry and contact dynamics

We will consider some ingredients of contact geometry that we will need
in the sequel.
Let M be a differentiable manifold of dimension 2n + 1 and a 1-form η
on M. We say that η is a contact 1-form if η ∧ (dη)n 6= 0 at every point.
Then, we call (M, η) a contact manifold. A distinguished vector field for
a contact manifold is the Reeb vector field R ∈ X(M) univocally
characterized by

iRη = 1 and iRdη = 0 .

We can define also an isomorphism of C∞(M,R) modules by

[̄ : X(M) −→ Ω1(M)
X 7−→ iXdη + η(X )η

Observe that [̄−1(η) = R.
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Using the generalized Darboux theorem, we have canonical coordinates
(qi , pi ,S), 1 ≤ i ≤ n in a neighborhooh of every point x ∈ M, such that
the contact 1-form η and the Reeb vector field are:

η = dS − pi dq
i and R =

∂

∂S
.

Define the bi-vector Λ on M by

Λ(α, β) = −dη([−1(α), [−1(β)), α, β ∈ Ω1(M) . (79)

In canonical coordinates,

Λ =
∂

∂pi
∧
(
∂

∂qi
+ pi

∂

∂S

)
(80)

Define the C∞(M,R)-linear mapping

]Λ : Ω1(M)→ X(M)

by 〈β, ]Λ(α)〉 = Λ(α, β) with α, β ∈ Ω1(M).
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Given a function f ∈ C∞(M,R) we will define the following vector fields

Hamiltonian or contact vector field Xf defined by

Xf = ]Λ(df )− fR

or in other terms, Xf is the unique vector field such that

[̄(Xf ) = df − (R(f ) + f ) η .

In canonical coordinates:

Xf =
∂f

∂pi

∂

∂qi
−
(
∂f

∂qi
+ pi

∂f

∂S

)
∂

∂pi
+

(
pi
∂f

∂pi
− f

)
∂

∂S

The evolution or horizontal vector field

Ef = ]Λ(df ) = Xf + fR

or
[̄(Ef ) = df −R(f ) η .

In canonical coordinates:

Ef =
∂f

∂pi

∂

∂qi
−
(
∂f

∂qi
+ pi

∂f

∂S

)
∂

∂pi
+ pi

∂f

∂pi

∂

∂S
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Remarks

1 We will see that the evolution vector field will be useful to describe some
simple isolated thermodynamical systems with friction, where the variable
S will play the role of the entropy of the system.

2 The interpretation of the variable S as being the entropy of the system
excludes the possibility of using cosymplectic geometry to describe
thermodynamical systems. Indeed, if the thermodynamical equations were
the integral curves of the cosymplectic Hamiltonian vector field, then the
entropy production would be constant, which is not the general situation.
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Jacobi and Cartan brackets

The pair (Λ,E = −R) is a particular case of Jacobi structure since it
satisfies

[Λ,Λ] = 2E ∧ Λ and [Λ,E ] = 0 .

From this Jacobi structure we can define the Jacobi bracket as follows:

{f , g} = Λ(df , dg) + fE (g)− gE (f ), f , g ∈ C∞(M,R)

The mapping { , } : C∞(M,R)× C∞(M,R) −→ C∞(M,R) is bilinear,
skew-symmetric and satisfies the Jacobi‘s identity but, in general, it does
not satisfy the Leibniz rule; this last property is replaced by a weaker
condition:

Supp {f , g} ⊂ Supp f ∩ Supp g .

In this sense, this bracket generalizes the well-known Poisson brackets.
Indeed, a Poisson manifold is a particular case of Jacobi manifold.
In local coordinates

{f , g} =
∂f

∂pi

∂g

∂qi
− ∂f

∂qi
∂g

∂pi
− ∂f

∂S

(
pi
∂g

∂pi
− g

)
+
∂g

∂S

(
pi
∂f

∂pi
− f

)
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It is also interesting for us to introduce the Cartan bracket (that does not
obey the Jacobi identity)

[f , g ] = Λ(df , dg)

=
∂f

∂pi

∂g

∂qi
− ∂f

∂qi
∂g

∂pi
− ∂f

∂S

(
pi
∂g

∂pi

)
+
∂g

∂S

(
pi
∂f

∂pi

)
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Mechanics

Our main example of contact manifold along this talk will be T ∗Q × R,
where Q is n-dimensional manifold, with contact structure defined by

ηQ = pr∗2 (dS)− pr∗1 (θQ) ≡ dS − θQ
where pr1 : T ∗Q × R→ T ∗Q and pr2 : T ∗Q × R→ R are the canonical
projections and θQ is the Liouville 1-form on the cotangent bundle
defined by

ηQ(Xµq ) = 〈µq,TµqπQXµq 〉
being Xµq ∈ TµqT

∗Q. Taking bundle coordinates (qi , pi ) on T ∗Q we
have that ηQ = dS − pidq

i .
On such a manifold we can define the bi-vector

Λ0 = Λ + ]Λ(dS) ∧R
which is Poisson, that is [Λ0,Λ0] = 0. In coordinates,

Λ0 =
∂

∂pi
∧ ∂

∂qi

is like the canonical Poisson bracket on T ∗Q but now applied to
functions on T ∗Q × R.
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Observe that in this case the Cartan bracket can be rewritten in terms of
the Poisson bracket induced by Λ0 and an extra term that describe the
thermodynamical behaviour. That is,

[f , g ] = {f , g}Λ0 −
∂f

∂S
∆g +

∂g

∂S
∆f

where ∆ = −]Λ(dS) is the Liouville vector field:

∆ = pi
∂

∂pi

We will denote by

{f , g}∆ =
∂g

∂S
∆f − ∂f

∂S
∆g

Then, the Cartan bracket is written as in the single generation formalism
as

[f , g ] = {f , g}Λ0 + {f , g}∆ (81)
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Now, we will discuss some interesting properties of the qualitative
behaviour of the evolution vector field Ef .

Proposition The Lie derivative of the contact form η with respect to the
evolution vector field Ef associated to the Hamiltonian function f
satisfies the following relation

LEf η = −R(f )η + df .

Proof:
The proof is a trivial consequence of the properties of the Lie derivative
and the properties of the Hamiltonian vector field:

LEf η = LXf +fRη = LXf
η + LfRη

= −R(f )η + (iRη)df = −R(f )η + df

142 / 174



Theorem Let Lc(f ) = f −1(c) be a level set of f : M → R where c ∈ R.
We assume that Lc(f ) 6= ∅ and R(f )(x) 6= 0 for all x ∈ Lc(f ). Then

1 The 2-form ωc ∈ Ω2(Lc(f )) defined by

ωc = −di∗c η

is an exact symplectic structure. Here ic : Lc f ↪→ M denotes the
canonical inclusion

2 If ∆c is the Liouville vector field, that is,

i∆cωc = i∗c η

then the restriction of Ef to Lc(f ) verifies that

Ef
∣∣
Lc (f )

= R(f )
∣∣
Lc (f )

∆c
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Proof:
The form ωc is trivially closed. To see that it is a symplectic form, we
just need to check that is non degenerate. Let p ∈ Lc(f ). Notice that, at
that point, ωc = −dη|TpLc (f ). By the condition R(f ) 6= 0, we have that
Rp (and, hence ker η = span 〈R〉) is transverse to TpLc(f ). But since
ηp ∧ dηnp 6= 0,then dη|V is non-degenerate for every subspace V
transverse to ker η. Therefore, ωc is also non-degenerated.
For the second part, we first remark that Ef (f ) = 0, hence
(ic)∗Ef = Ef |Lc (f ) is a well-defined vector field. By the above Proposition
and Cartan’s identity

iEf dη = −R(f )η + df .

Pulling back by ic , we get

i(ic )∗Ef i
∗
c dη = −(R(f ) ◦ ic)i∗c η + di∗c f = −(R(f ) ◦ ic)i∗c η,

dividing by −(R(f ) ◦ ic),

−i(ic )∗Ef /R(f )i
∗
c dη = i(ic )∗Ef /R(f )ωc = i∗c η.

Thus, (ic)∗ (Ef /R(f )) = ∆c , as we wanted to show.
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Remarks

1 Observe that since
Ef
∣∣
Lc (f )

= R(f )
∣∣
Lc (f )

∆c

then, the dynamics on each energy level is like a Liouville dynamics after
a time reparametrization

dt =
1

R(f )
dτ .

2 It is interesting to note that T ∗Q × R is also the phase space for
time-dependent dynamics. In this case, the appropriate formalism is the
cosymplectic formalism where the canonical cosymplectic structure is
given by (dt, ωQ)
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A. Bravetti, M. de León, J. C. Marrero, E. Padrón: Invariant measures
for contact Hamiltonian systems: symplectic sandwiches with contact
bread. J. Phys. A 53 (2020), no. 45, 455205, 24 pp.

We prove that, under some natural conditions, Hamiltonian systems on a
contact manifold C can be split into a Reeb dynamics on an open subset
of C and a Liouville dynamics on a submanifold of C of codimension 1.

For the Reeb dynamics we find an invariant measure.

Moreover, we show that, under certain completeness conditions, the
existence of an invariant measure for the Liouville dynamics can be
characterized using the notion of a symplectic sandwich with contact
bread.
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Simple thermodynamical systems

We will use the evolution vector field to describe simple thermodynamical
systems, that is, thermodynamical systems whose configuration space is
composed by just one scalar thermal variable (in our case the entropy)
and a finite set of mechanical variables (position and momenta). We will
assume that the system is isolated, that is, there is not any transfer of
work, matter or heat.
The isolated simple thermodynamical systems are described by a
Lagrangian function:

L : TQ × R −→ R
(vq,S) 7−→ L(vq,S)

where Q is the configuration manifold describing the mechanical part of
the thermodynamical system, TQ is the tangent bundle with canonical
projection τQ : TQ → Q given by τQ(vq) = q. The entropy of the system
is described by the real variable S ∈ R. If we consider coordinates (qi ) on
Q and induced coordinates (qi , q̇i ) on TQ, then τQ(qi , q̇i ) = (qi ).
We will see that the Lagrangian function itself will produce a friction
force satisfying naturally the two laws of thermodynamics.
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We will assume that the Lagrangian system is regular, that is, the matrix

(Wij) =

(
∂2L

∂q̇i∂q̇j

)
is regular or, equivalently, the mapping FL : TQ × R→ T ∗Q × R is a
local diffeomorphism, where:

FL(qi , q̇i ,S) =

(
qi ,

∂L

∂q̇i
,S

)
is the Legendre transform. For simplicity, we will assume that the
Legendre transform is a global diffeomorphism, since if it was only a local
diffeomorphism we could proceed analogously by restricting to a
neighbourhood. Then, we may define a Hamiltonian function
H : T ∗Q × R→ R given by

H(qi , pi ,S) = pi q̇
i − L(qi , q̇i ,S)

where now the coordinates q̇i are implicitly defined by the relations
pj = ∂L

∂q̇j (q
i , q̇i ,S).
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The equations of motion defined by the evolution vector field EH are

dqi

dt
=

∂H

∂pi
,

dpi
dt

= −∂H
∂pi
− pi

∂H

∂S

dS

dt
= pi

∂H

∂pi
.

The vector field EH satisfies the following two properties that correspond
to the first and second laws of thermodynamics: conservation of the
energy of an isolated system and irreversibility of the processes, that is,
non-decreasing entropy production.
Proposition The integral curves of EH satisfies the following properties:

1 EH(H) = 0, that is, dH
dt = 0;

2 EH(S) = ∆(H), that is, dS
dt = ∆H.

Proof Both are a direct consequence of the definition of the evolution
vector field EH = ]Λ(dH).
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Assume that the Hamiltonian H is given by

H(qi , pi ,S) =
1

2
g ijpipj + V (q,S) (82)

where (g ij) is positive semi-definite (for instance, it is associated to a
Riemannian metric on Q). Then, the vector field EH describes an isolated
simple thermodynamical system with friction satisfying the first and
second laws of thermodynamics:
Proposition The integral curves of EH satisfies the following properties:

1 First law of Thermodynamics:

dH

dt
= 0 (preservation of the total energy);

2 Second law of Thermodynamics:

dS

dt
= ∆H ≥ 0 (total entropy of an isolated system never decreases).

Proof It is a direct consequence of the above Proposition and
∆H = pig

ijpj ≥ 0.
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If we express the dynamics in terms of the brackets defined in (81) we
have that

ḟ = {f ,H}T∗Q + {f ,H}∆. (83)

Obviously,

{H,H}T∗Q = {H,H}∆ = 0 (first law)

and

{S ,H}T∗Q = 0 and {S ,H}∆ = ∆H ≥ 0 (second law).

Observe that in Equation (83) both brackets are using the function H as
“generator”. This is the reason that typically this formalism is known as
single generator formalism.
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Linearly damped systems

Consider a linearly damped system described by coordinates (q, p,S),
where q represents the position, p the momentum of the particle and S is
the entropy of the surrounding thermal bath. We assume that the system
is subjected to a viscous friction force, proportional to the minus velocity
of the particle. The system is described by the Hamiltonian

H(q, p,S) =
p2

2m
+ V (q) + γS , γ > 0.

Therefore, the equations of motion for EH = ]Λ(dH) are: q̇
ṗ

Ṡ

 =

 0 1 0
−1 0 −p

0 p 0

 V ′(q)
p/m
γ


or

q̇ =
p

m
ṗ = −V ′(q)− γp

Ṡ =
p2

m

Obviously Ḣ = 0 and Ṡ ≥ 0.
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In the Lagrangian side we obtain the system given by

mq̈ = −V ′(q)− γmq̇

Ṡ = mq̇2.

Observe that in this system the friction force is given by the map
Ffr : TQ → T ∗Q given by

Ffr (q, q̇) = γq̇idqi .

Therefore, the equation of entropy production can be rewritten in terms
of the friction force as follows

TṠ = −〈Ffr (q, q̇), q̇〉

where T = ∂H
∂S = − ∂L

∂S = γ > 0 represents the temperature of the
thermal bath. These equations coincide with the set of equations
proposed by Gay-Balmaz and Yoshimura for this particular choice of
Lagrangian L and friction force Ffr . Observe that, in this particular
example where the temperature satisfies T = γ, the equations are only
defined for values γ > 0 and thus we are only modelling thermodynamical
systems with non-zero temperature.
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Observe that the two brackets are:

{f , g}Λ0 =
∂f

∂p

∂g

∂q
− ∂g

∂p

∂f

∂q

{f , g}∆ = p
∂g

∂S

∂f

∂p
− p

∂f

∂S

∂g

∂p

In particular

{H, g}Λ0 =
p

m

∂g

∂q
− ∂g

∂p
V ′(q)

{H, g}∆ =
p2

m

∂g

∂S
− γp∂g

∂p

and
EH(g) = ġ = {H, g}Λ0 + {H, g}∆

Therefore it is clear that {H,H}Λ0 = 0 and {H,H}∆ = 0 (by

skew-symmetry) and {H,S}Λ0 = 0 and {H,S}∆ = p2

m ≥ 0.
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Composed thermodynamical systems without friction

We will present a model for systems composed of at least two subsystems
exchanging heat with each other.
Consider two thermodynamic systems indexed by 1 and 2 which may
interact through a conducting wall. On each system we have defined the
corresponding Hamiltonian:

Hi : T ∗Qi × R −→ R , 1 ≤ i ≤ 2

where (qi , pi ,Si ) are coordinates on T ∗Qi × R, i = 1, 2, and Si are the
entropies of each subsystem.
Consider the total energy H : T ∗(Q1 × Q2)× R2 → R defined by

H(q1, p1, q2, p2,S1,S2) = H1(q1, p1,S1) + H1(q1, p1,S1)

and the symplectic 2-form on T ∗(Q1 × Q2)× R2

ΩQ1×Q2×R = ωQ1 + ωQ2 + dS1 ∧ dS2

Denote by ΛQ1×Q2×R the corresponding Poisson tensor.
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Assume that both subsystems exchange heat according to Fourier Law:

h = k(T2 − T1)

where Ti is the absolute temperature of subsystem i , 1 ≤ i ≤ 2 and k is
the coefficient of thermal conductivity. We have that Ti = ∂H

∂Si
> 0.

Consider the function K : T ∗(Q1 × Q2)× R2 → R

K = k

(
1
∂H
∂S1

− 1
∂H
∂S2

)
= k

(
1

T1
− 1

T2

)
which will be called Fourier factor. Define the Hamiltonian vector field of
K by

XK = ΛQ1×Q2×R(·, dK ) or alternatively iXK
ΩQ1×Q2×R = dK .

Define the two-tensor (with Fourier factor K ) denoted by ΛK , which is
associated in the canonical way with the 2-form

ΩK = ωQ1 + ωQ2 + KdS1 ∧ dS2

Observe that now ΩK is no longer a symplectic form and so ΛK is a
skew-symmetric Poisson structure. In other words, ΛK is a
skew-symmetric tensor.
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The matrix representation of ΛK is:

0 In1×n1 0 0 0 0
−In1×n1 0 0 0 0 0

0 0 0 In2×n2 0 0
0 0 −In2×n2 0 0 0

0 0 0 0 0 k
(

1
T1
− 1

T2

)
0 0 0 0 k

(
1
T2
− 1

T1

)
0


where dimQi = ni , i = 1, 2.
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The corresponding evolution vector field EH,K :

EH,K = ]ΛK
(dH) (84)

The integral curves of EH,K are:

q̇1 =
∂H

∂p1

ṗ1 = − ∂H
∂q1

Ṡ1 = k(
T2

T1
− 1)

q̇2 =
∂H

∂p2

ṗ2 = − ∂H
∂q2

Ṡ2 = k(
T1

T2
− 1).

(85)

Observe that the total entropy S = S1 + S2 satisfies

Ṡ = EH,K (S1 + S2)

= k(
T2

T1
− 1) + k(

T1

T2
− 1)

= k
(T2 − T1)2

T1T2
≥ 0
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Moreover, in absence of external forces, the total energy H is conserved
since by skew-symmetry of ΛK we have that

EH,K (H) = 0 .

Thus, we have shown that:

Proposition
Given a Hamiltonian function H, the evolution vector field EH,K in the

skew-symmetric manifold (T ∗(Q × Q ×R),ΛK ), which encodes the
dynamics of composed thermodynamical systems exchanging heat with
each other, satisfies the first and second laws of Thermodynamics.
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Example

The toy model for this case is the two free thermo-particles example,
composed by two particles of equal mass such that the system is
modelled by the Hamiltonian function

H(q1, p1,S1, q2, p2,S2) =
1

2m
(p2

1 + p2
2) + T1S1 + T2S2,

where m is the mass of both particles and T1, T2 are the temperatures of
each particle.
A physical example is the two thermo-spring system, where the system is
modelled by the Hamiltonian function

H(q1, p1,S1, q2, p2,S2) =
1

2m
(p2

1 + p2
2) + V (q1, q2) + T1S1 + T2S2,

where V is the potential energy associated to the interplay between both
springs, m is the mass of both springs and T1, T2 are the temperatures
of each spring.
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Other topics in contact Hamiltonian dynamics

In the next slides I will indicate some of the research topics we have been
working on in recent years. I will indicate only the topic, a very brief
description and the references where you can find more details.
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Infinitesimal symmetries and dissipate quantities

M. de León, M. Lainz-Valcázar: Infinitesimal symmetries in contact
Hamiltonian systems. J. Geom. Phys. 153 (2020), 103651, 13 pp
M. de León, M. Lainz-Valcázar, A. López-Gordon: Symmetries, constants
of the motion, and reduction of mechanical systems with external forces.
J. Math. Phys. 62 (2021), no. 4, 042901, 16 pp.

1 In the first paper, we extend the well-known Noether theorem for
Lagrangian systems to contact Lagrangian systems. Moreover, we
introduce a classification of infinitesimal symmetries and obtain the
corresponding dissipated quantities. We notice that in contact dynamics,
the existence of infinitesimal symmetries does not produce conserved
quantities, but functions that dissipate at the same rate than the energy;
so, the corresponding quotients are true conserved quantities. The case
of contact reduction by a Lie group of symmetries is also discussed.

2 In the second paper we consider symmetries for non-conservative
systems, including Rayleigh dissipation.
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Contact nonholonomic mechanical systems

M. de León, V.M. Jiménez, M. Lainz-Valcázar: Contact Hamiltonian and
Lagrangian systems with nonholonomic constraints. Journal of Geometric
Mechanics (2021) doi: 10.3934/jgm.2021001.

In this article we develop a theory of contact systems with nonholonomic
constraints.

We obtain the dynamics from Herglotzs variational principle, by
restricting the variations so that they satisfy the nonholonomic
constraints.

We prove that the nonholonomic dynamics can be obtained as a
projection of the unconstrained Hamiltonian vector field.

Finally, we construct the nonholonomic bracket, which is an almost
Jacobi bracket on the space of observables and provides the
nonholonomic dynamics.
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Singular contact Lagrangian systems

M. de León, M. Lainz-Valcázar: Singular Lagrangians and precontact
Hamiltonian systems. Int. J. Geom. Methods Mod. Phys. 16 (2019),
no. 10, 1950158, 39 pp.

In the first paper we discuss singular Lagrangian systems on the
framework of contact geometry. These systems exhibit a dissipative
behavior in contrast with the symplectic scenario.

We develop a constraint algorithm similar to the presymplectic
onestudied by Gotay and Nester (the geometrization of the well-known
Dirac-Bergman algorithm).

We also construct the Hamiltonian counterpart and prove the equivalence
with the Lagrangian side.

A Dirac-Jacobi bracket is constructed similar to the Dirac bracket.
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Contact discrete dynamics

A.A. Simoes, D. Mart́ın de Diego, M. de León, M. Lainz-Valcázar: On
the geometry of discrete contact mechanics. Journal of Nonlinear
Sciencer 31 (2021), no. 3, Paper No. 53.

We introduce a discrete Herglotz Principle and the corresponding discrete
Herglotz Equations for a discrete Lagrangian in the contact setting. This
allows us to develop convenient numerical integrators for contact
Lagrangian systems that are conformally contact by construction.

The existence of an exact Lagrangian function is also discussed.
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Uniform formalism

M. de León, J. Gaset, M. Lainz-Valcázar, X. Rivas, N. Román-Roy:
Unified Lagrangian-Hamiltonian formalism for contact systems. Fortschr.
Phys. 68 (2020), no. 8, 2000045, 12 pp.

We develop a unified geometric framework for describing both the
Lagrangian and Hamiltonian formalisms of contact autonomous
mechanical systems, which is based on the approach of the pionnering
work of R. Skinner and R. Rusk.

This framework permits to skip the second order differential equation
problem, which is obtained as a part of the constraint algorithm (for
singular or regular Lagrangians), and is specially useful to describe
singular Lagrangian systems.

Some examples are also discussed to illustrate the method.

166 / 174



Contact Optimal Control Theory

M. de León, M. Lainz-Valcázar, M.C. Muñoz-Lecanda: Optimal control,
contact dynamics and Herglotz variational problem arXiv preprint
arXiv:2006.14326 (2020)

We combine two main topics in mechanics and optimal control theory:
contact Hamiltonian systems and Pontryagin Maximum Principle.

As an important result, a contact Pontryagin Maximum Principle that
permits to deal with optimal control problems with dissipation is
developed.

Also, the Herglotz optimal control problem is stated, in such a way that
generalizes simultaneously the Herglotz variational principle and an
optimal control problem.

Some applications to the study of a thermodynamic system are provided.
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Existence of invariant measures

A. Bravetti, M. de León, J.C. Marrero, E. Padrón: Invariant measures for
contact Hamiltonian systems: symplectic sandwiches with contact bread
Journal of Physics A: Mathematical and Theoretical 53 (45), (2020)
455205.

An important topic in dynamical systems is the existence of invariant
measures. We prove that, under some natural conditions, Hamiltonian
systems on a contact manifold C can be split into a Reeb dynamics on
an open subset of C and a Liouville dynamics on a submanifold of C of
codimension 1.

Thus, an invariant measure is obianed for the Reeb dynamics, and
moreover, a under certain completeness conditions, the existence of an
invariant measure for the Liouville dynamics can be characterized using
the notion of a symplectic sandwich with contact bread developed in this
paper.
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Contact higher order mechanics

M. de León, J. Gaset, M Lainz-Valcázar, M.C. Muñoz-Lecanda, N.
Román-Roy: Higher-order contact mechanics. Annals of Physics 425
168396 (2021)

We present a complete theory of higher-order autonomous contact
mechanics, which allows us to describe higher-order dynamical systems
with dissipation.

The essential tools for the theory are the extended higher-order tangent
bundles, T kQ × R, and its canonical geometric structures. This allow us
to state the Lagrangian and Hamiltonian formalisms for these kinds of
systems, as well as their variational formulation.

In that paper, a unified description that encompasses the Lagrangian and
Hamiltonian equations as well as their relationship through the Legendre
map; all of them are obtained from the contact dynamical equations and
the constraint algorithm that is implemented because, in this formalism,
the dynamical systems are always singular.

The theory is applied to some interesting examples. 169 / 174



Inverse problem for contact Lagrangian mechanics

M. de León, J. Gaset, M. Lainz-Valcárzal: Inverse problem and equivalent
contact systems. Preprint, 2021.

1 A relevant problem in mechanics is the so-called inverse problem: Given a
second-order differential equation ξ on TQ, when there exists a
Lagrangian L such that ξ is the Euler-Lagrange vector field for L?

2 This problem has been investigatd by decades (the Helmholtz conditions
have been interpreted geometrically using the geometry of tangent
bundles).

3 Our research is focused on a similar problem for contact Lagrangian
systems.
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Classification of contact Lagrangians

M. de León, I. Guti, M. Lainz-Valcárzal: Classification of contact
Lagrangian systems.

1 The classification of Lagrangian systems has been studied by several
authors in the autonomous and non–autonomous cases, in relation with
the regularization problem.

2 In this ongoing paper we discuss similar problems for contact Lagrangian
systems.
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Vakonomic contact systems

M. de León, M Lainz-Valcázar, M.C. Muñoz-Lecanda: The Herglotz
principle and vakonomic dynamics. (To appear in Springer, 2021).
M. de León, M Lainz-Valcázar, M.C. Muñoz-Lecanda, N. Román-Roy:
Constrained Lagrangian dissipative contact dynamic. (In preparation).

1 Nonholonomic and vakonomic dynamics obey to different principles.
These two different approaches and their relations have been widely
discussed in the last two decades.

2 Nonholonomic equations are related with mechanical systems subjected to
constraints whilw vakonomic dynamics are related with control problems.

3 In the above papers we have started the discussion in the contact case.
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Tulczyjew triples in contact dynamics

O. Esen, M. de León, M Lainz-Valcázar, J.C. Marrero: Tulczyjew triples
in contact dynamics. (Preprint 2021).

1 The construction of Tulczyjew triples (named after their creator, W.M.
Tulczyjew) provides a global view of the Lagrangian and Hamiltonian
dynamics as subvarieties of the so-called special symplectic varieties.

2 In this paper we develop the corresponding theory in the contact case,
where Lagrangian submanifols are replaced by Legendrian submanifolds
of special contact manifolds.
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